The Kupershmidt hydrodynamic chains and lattices

نویسندگان

  • Maxim V. Pavlov
  • Boris Kupershmidt
چکیده

This paper is devoted to the very important class of hydrodynamic chains (see [9], [23], [24]) first derived by B. Kupershmidt in [14], later re-discovered by M. Blaszak in [4] (see also [21]). An infinite set of local Hamiltonian structures, hydrodynamic reductions parameterized by the hypergeometric function and reciprocal transformations for the Kupershmidt hydrodynamic chains are described. In honour of Boris Kupershmidt

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ماهیت ویژه حالتهای فونون در زنجیرهای شبه تناوبی( نقش شبکه‌های فیبوناچی )

  Using the forced oscillator method (FOM) and the transfer-matrix technique, we numerically investigate the nature of the phonon states and the wave propagation, in the presence of an external force, in the chains composed of Fibonacci lattices of type site, bond and mixing models, as the quasiperiodic systems. Calculating the Lyapunov exponent and the participation ratio, we also study the lo...

متن کامل

Classification of integrable hydrodynamic chains and generating functions of conservation laws

New approach to classification of integrable hydrodynamic chains is established. Generating functions of conservation laws are classified by the method of hydrodynamic reductions. N parametric family of explicit hydrodynamic reductions allows to reconstruct corresponding hydrodynamic chains. Plenty new hydrodynamic chains are found.

متن کامل

Hydrodynamics of Weakly Deformed Soliton Lattices. Differential Geometry and Hamiltonian Theory Hydrodynamics of Weakly Deformed Soliton Lattices. Differential Geometry and Hamiltonian Theory

CONTENTS Introduction 35 Chapter I. Hamiltonian theory of systems of hydrodynamic type 45 § 1. General properties of Poisson brackets 45 §2. Hamiltonian formalism of systems of hydrodynamic type and 55 Riemannian geometry §3. Generalizations: differential-geometric Poisson brackets of higher orders, 66 differential-geometric Poisson brackets on a lattice, and the Yang-Baxter equation §4. Rieman...

متن کامل

The Hamiltonian approach in classification and integrability of hydrodynamic chains

New approach in classification of integrable hydrodynamic chains is established. This is the method of the Hamiltonian hydrodynamic reductions. Simultaneously, this approach yields explicit Hamiltonian hydrodynamic reductions of the Hamiltonian hydrodynamic chains. The concept of reducible Poisson brackets is established. Also this approach is useful for non-Hamiltonian hydrodynamic chains. The...

متن کامل

An equivalence functor between local vector lattices and vector lattices

We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006